International Workshop:

Wildlife Capture, Immobilization, and Handling Techniques

Khao Pratubchang Wildlife Confiscation and Breeding Center
9-12 January 2007

University of Minnesota
ACKNOWLEDGEMENTS

This workshop was hosted by the Department of National Parks, Wildlife and Plant Conservation (DNP) and organized by the Faculty of Veterinarian Science, Mahidol University in cooperation with the University of Minnesota. Funding was provided by the US Fish and Wildlife Service’s Tiger Conservation Fund.

We are especially grateful to Dr. Parntep, Dean of the School of Veterinarian Science, Mahidol and Dr. Schwann Tunhikorn, Advisor to the Director of DNPWC, for helping to organize the workshop. We would also like to gratefully recognize the tireless efforts Ms. Budsabong Kanchanasaka in securing official permissions to hold the workshop.

We extend our deepest thanks to Mr. Pornchi Patumrattanathan, Chief of Khao Pratubchang Wildlife Breeding Center, who was responsible for hosting, organizing and making this workshop a success. We also would like to thank Drs. Terry Kreeger, Parntep Ratanakorn, Dave Smith, and Rattapan Pattanarangsan, whose expert instruction enriched the course. We would especially like to thank Dr. Kreeger who provided the core lectures.

This report was written by Peter Cutter and J.L. David Smith

(Contact: jlds@umn.edu)
EXECUTIVE SUMMARY

An international training course entitled “Wildlife Capture, Immobilization and Handling” was held at Khao Pratubchang Wildlife Breeding Center from 9-12 January 2007. The purpose of the workshop was to provide training for field biologists, rangers, protected areas managers, and other government officers in the techniques required to safely and effectively capture, immobilize and handle wild animals for research and management. A secondary objective of the workshop was to foster cooperation in tiger conservation efforts between participating countries. The workshop included participants from Thailand, Bangladesh, Bhutan, England, and the U.S.

The 4 day workshop covered the following topics:

- Legal, Ethical, and Humane Considerations in Wildlife Research
- Capture and Immobilization Philosophy and Overview
- Immobilization Drugs
- Wildlife Capture Planning and Logistics
- Drug Delivery Techniques and Equipment
- Behavioral Observations
- Emergency Treatment: Animal and Human Emergencies
- Animal Capture: Taxa-specific techniques
- Specimen Handling
- Telemetry, GPS, and Satellite Collars: Ecological Research and Monitoring Approaches
- Hands on Practicals: Capture, Immobilization, and Handling Operations
 - Primates: Macaque
 - Carnivores: Tiger
 - Carnivores: Malayan Sun Bear

Workshop participants and facilitators considered the workshop a success. In addition to achieving its specific stated objectives, the workshop allowed participants to develop useful professional relationships and explore new opportunities for collaboration and cooperation. Participants were asked to critically evaluate all elements of the course and responses are summarized.
บทสรุปสำหรับผู้บริหาร
หลักสูตรการฝึกอบรมเชิงปฏิบัติการระหว่างประเทศ เรื่อง “การจับและการใช้ยาระงับความเคลื่อนไหวในสัตว์” จัดขึ้น ณ สถานีเพาะเลี้ยงสัตว์ป่าเขาประทับช้าง จังหวัดราชบุรี ระหว่างวันที่ 9-12 มกราคม 2550 มีวัตถุประสงค์เพื่อฝึกอบรมนักวิจัยด้านชีววิทยาที่ทำงานในภาคสนาม ผู้บริหารจัดการพื้นที่อนุรักษ์ รวมทั้งเจ้าหน้าที่จากหน่วยงานอื่นๆของรัฐที่ต้องการเรียนรู้เรื่องเทคนิคในการจับสัตว์ และการใช้ยาระงับความเคลื่อนไหวในสัตว์ เพื่อใช้ในการปฏิบัติงานที่เกี่ยวข้องกับสัตว์ป่า รวมถึงการคำนึงถึงความปลอดภัยและประสิทธิภาพในการปฏิบัติงาน นอกจากนี้ การฝึกอบรมในครั้งนี้ยังมีวัตถุประสงค์เพื่อกระชับความสัมพันธ์ในกลุ่มผู้ที่ทำงานด้านการอนุรักษ์เสือโคร่ง ซึ่งในจำนวนผู้เข้าอบรม นอกจากจะมีผู้เข้าร่วมจากประเทศไทยเองแล้วยังมีผู้เข้าร่วมจากหน่วยงานของภาครัฐและเอกชนจากประเทศบังคลาเทศ ญี่ปุ่นและจากประเทศสหรัฐอเมริกาเข้าร่วมด้วย

การฝึกอบรมเชิงปฏิบัติการทั้งสี่วันคลุมหัวข้อวิชา ดังนี้
- ข้อควรพิจารณาด้านระเบียบ กฎหมาย และมนุษยธรรมในการทำวิจัยเกี่ยวกับสัตว์ป่า
- ศาสตร์และภาพรวมเกี่ยวกับการจับสัตว์และการใช้ยาระงับความเคลื่อนไหว
- ยากระตุ้นความเคลื่อนไหวในสัตว์
- การวางแผนการจับสัตว์ และการเตรียมการต่างๆ
- เทคนิคการให้ยาสัตว์ และอุปกรณ์
- การส่งต่อพฤติกรรม
- การแก้ไขสถานการณ์ฉุกเฉิน: สำหรับสัตว์และคน
- เทคนิคการจับสัตว์ จ่ายเกณฑ์ชนิดสัตว์
- การเก็บตัวอย่างสัตว์
- ปลอกคอสำหรับการติดตามตรวจสอบสัตว์ป่า ชนิดรับส่งโดยเครื่องวิทยาการภูมิศาสตร์ หรือโดยส่งผ่านทางเทียม: วิธีการที่นำมาใช้ในงานวิจัยด้านนิเวศวิทยา และในการติดตามตรวจสอบสัตว์ป่า
- การฝึกปฏิบัติ: การจับ การใช้ยาระงับความเคลื่อนไหว และวิธีปฏิบัติที่เกี่ยวข้องกับสัตว์ป่า
 - สัตว์ประเภทต่าง: สิงโต ลิง
 - สัตว์คู่: เสือโคร่ง หมีควาย
- สรุป ผู้เข้าร่วมการฝึกอบรมและผู้จัดเห็นว่าการดำเนินงานบรรลุวัตถุประสงค์ตามที่คาดหมาย และผู้เข้าอบรมยังมีโอกาสได้แลกเปลี่ยนประสบการณ์ด้านการทำงานระหว่างกันและกันซึ่งจะเป็นประโยชน์ต่อการกระชับความสัมพันธ์และประสานความร่วมมือต่อไปในอนาคต และผู้เข้าอบรมยังมีโอกาสได้แสดงความคิดเห็นและประเมินทั้งผู้บริหารและวิธีการในการฝึกอบรมในครั้งนี้ด้วย ซึ่งทางผู้จัดได้สรุปไว้ในรายงานฉบับนี้แล้ว
CONTENTS

Acknowledgements ...2
Executive Summary ..3
Introduction ..7
Location ..7
Selection of Participants ..7
Course Overview ..7
Classroom and Other Instruction Units ...9
 Legal, Ethical, and Humane Considerations (Dr. Parnthe P Ratanakorn) ..9
 Capture and Immobilization Philosophy and Overview (Dr. Terry Kreeger) ...9
 Immobilization Drugs (Dr. Terry Kreeger) ...9
 Drug Delivery Techniques and Equipment (Dr. Terry Kreeger, Dr. Dave Smith) ...10
 Behavioral Observations (Mr. Pornchai Pathumrattanathan) ..10
 Emergency Treatment: Animal and Human Emergencies (Dr. Terry Kreeger) ..10
 Animal Capture: Taxa-specific Techniques (Mr. Pornchai Pathumrattanathan, Dr. Dave Smith)11
 Specimen Handling (Mahidol Veterinary Staff) ..11
 Telemetry, GPS, and Satellite Collars: Ecological Research and Monitoring Approaches (Dr. Dave Smith)11
Hands-on Training: Capture, Immobilization, and Handling Operations ..12
 General ...12
 Primates: Macaque ..12
 Carnivores: Tiger ...12
 Carnivores: Asiatic Black Bear ..13
Participant Evaluation ..14
Workshop Evaluation ..14
Recommendations ..15
References ..15

APPENDIX I. WORKSHOP INSTRUCTORS AND SUPPORT STAFF ...16
APPENDIX II. COURSE PARTICIPANTS ..18
APPENDIX III. COURSE SCHEDULE ..24
APPENDIX IV. A REVIEW OF ANIMAL CAPTURE AND HANDLING PRINCIPLES AND TECHNIQUES (THAI LANGUAGE) ...25
APPENDIX V. MISCELLANEOUS PHOTOS ...32
INTRODUCTION
Throughout Asia, wildlife managers and field biologists may find themselves in circumstances that require the capture of wild, and sometimes dangerous, animals. Successful animal capture requires specialized skills and knowledge that can only be acquired through working in the field with an experienced practitioner, through focused training, or both.

The purpose of this workshop was to provide participants with the skills and knowledge for carrying out wildlife capture, immobilization, and handling operations in the field or in captive situations. The emphasis was on mammals and examples included carnivores, ungulates, and primates.

The workshop incorporated lectures, demonstrations and practical, hands-on activities. Topics covered included legal and safety issues, capture techniques, drug administration and handling procedures. The workshop was conducted in English and Thai language with participants from Thailand, Bangladesh, Bhutan, UK, and USA.

For participants from Bangladesh and Bhutan, the main goal was to provide a general overview of all wildlife capture issues so that officials and field staff could provide appropriate oversight and assistance to field practitioners.

For participants working in Thailand’s western border protected areas, a specialized goal was to provide managers and biologists with an overview of methods and skills with which to plan and carry out effective tiger conservation measures. It is hoped that these efforts will serve to demonstrate the value and importance of understanding and monitoring the status of tigers and other large carnivores throughout the region.

LOCATION
The workshop was held at Khao Pratubchang Wildlife Breeding Center in Ratchaburi, Thailand. This center is located approximately 2 hours drive from Bangkok and serves as a critical resource for ongoing international and national breeding programs and as a “half-way house” for animals confiscated from the illegal wildlife trade. Part of a network of such centers throughout Thailand, Khao Pratubchang’s emphasis is on wild felids.

The center is staffed by a highly skilled team of wildlife technicians with experience in both field and captive animal handling operations.

SELECTION OF PARTICIPANTS
Participants were recruited based on their involvement in ongoing or planned field projects involving the handling of wild animals or their role in overseeing such projects.

Specifically, the Thai participants consisted of technicians from the Department of National Park, Wildlife and Plant Conservation and faculty, staff and students from Mahidol University school of Veterinary Medicine.

Participants from Bangladesh were representatives of the Bangladesh Forest Department and are all involved in wildlife conservation activities.

The sole Bhutanese participant, Mr. Wangdee, was recruited based on his potential role in assisting with a range of large mammal field studies now being initiated in Bhutan.

COURSE OVERVIEW
The workshop combined theoretical and hands-on instruction on animal capture, immobilization and handling to introduce course participants to the current best practice theory and techniques. The ultimate goal of the workshop was to accelerate the progress of several wildlife conservation initiatives in Asia by providing participants with:
knowledge and skills with which to design and carry out effective captures and other handling operations;
• an expanded network of like-minded professionals from which to draw experienced advice, information, support, and cooperation; and
• the confidence conferred by repeated, hands-on experience with live animal subjects.

The 4-day workshop consisted of classroom instruction, discussion, and hands-on work organized around the following topics:

• Legal, Ethical, and Humane Considerations in Wildlife Research
• Capture and Immobilization Philosophy and Overview
• Immobilization Drugs
• Wildlife Capture Planning and Logistics
• Drug Delivery Techniques and Equipment
• Behavioral Observations
• Emergency Treatment: Animal and Human Emergencies
• Animal Capture: Taxa-specific techniques
• Specimen Handling
• Telemetry, GPS, and Satellite Collars: Ecological Research and Monitoring Approaches
• Hands on Practicals: Capture, Immobilization, and Handling Operations
 o Primates: Macaque
 o Carnivores: Tiger
 o Carnivores: Malayan Sun Bear

All participants and instructors stayed on site or at a hotel nearby the training site and all meals were shared at the training site. This allowed for informal discussion among participants and instructors and allowed instructors to field questions specific to individual interests and projects.
CLASSROOM AND OTHER INSTRUCTION UNITS

Legal, Ethical, and Humane Considerations (Dr. Parnthep Ratanakorn)

This unit covered a wide range of the legal, ethical, and humane considerations that should be a primary consideration of any biologist undertaking work with captive and wild animals. Legal issues covered included controlled substances (drug) laws, wildlife laws, firearm laws, and laws related to professional conduct. Ethical and humane issues covered included the importance of ensuring five elements of animal freedom (e.g., freedom from hunger and thirst, discomfort, disease and pain, fear and distress, and freedom to express normal behavior) and issues related to maximizing the value of situations requiring animal capture and immobilization.

Capture and Immobilization Philosophy and Overview (Dr. Terry Kreeger)

In this session, students were introduced to a basic framework for undertaking capture and immobilization operations and each student received a copy of the Handbook of Wildlife Chemical Immobilization: International Edition. Key topics included effective preparation and planning, approaching the animal, and means of assessing drug effects. Immobilization issues included consideration of therapeutic index (TI) of drugs and the significance of drug interactions in determining drug combinations and dosages. The significance of the subject animal's metabolism and physiology was covered in detail.

Immobilization Drugs (Dr. Terry Kreeger)

This session presented an overview of the various classes of drugs used in immobilization operations (e.g., paralytics, tranquilizers, and anesthetics), their legal context, and their use with various groups of animals. Also covered were the effects of specific drugs on the respiratory, circulatory, and other systems of target animals. Drawing on years of experience with animals from numerous taxa, Terry Kreeger was able to field specific questions relevant to participants’ ongoing projects and professional work.
Drug Delivery Techniques and Equipment (Dr. Terry Kreeger, Dr. Dave Smith)

This unit provided participants with an overview of drug delivery techniques including jabsticks, blowguns, air guns, drugged bait and powder charge delivery systems. Safety was emphasized and all participants were given plenty of time to practice with various equipment and techniques. Also covered were the advantages and disadvantages in a variety of likely situations from captive animals to those captured in snares.

Behavioral Observations (Mr. Pornchai Pathumrattanathan)

The training site at Khao Pratubchang and Khao Son Breeding Centers provided rare opportunities for observations of a wide taxonomic range of animals. Participants were able to gain insights about the behavior and physical characteristics of various species that will help them better assess and plan immobilization operations in the future.

Emergency Treatment: Animal and Human Emergencies (Dr. Terry Kreeger)

This unit focused on precautionary steps and ways of avoiding emergencies for both humans and wildlife. However, wildlife capture, immobilization, and handling operations inevitably entail a risk to both target animals and humans undertaking the activity. Such cases call for a calm and direct response. Scenarios covered included animal emergencies such as respiratory depression and arrest, hyperthermia and hypothermia, shock, vomiting, seizures, and severe wounds.

The unit also addressed human emergencies such as severe wounds and exposure to drugs and how these emergencies can be minimized with the use of appropriate procedures and protective gear.
Animal Capture: Taxa-specific Techniques (Mr. Pornchai Pathumrattanathan, Dr. Dave Smith)

This session introduced participants to a range of specialized techniques developed for capturing and immobilizing species that may be encountered in Asian habitats such as large cats, ungulates, and primates. The emphasis was on fast and effective capture methods that reduce the risk of injury to the target animal. The unit emphasized safety and minimizing disturbance to target animals. Hand-on demonstrations of equipment and video footage of recent capture, immobilization, and collaring operations at Huai Kha Khaeng provided participants with a unique look at current work.

Specific topics included a review of proven capture techniques and equipment (including recently patented capture equipment developed in Thailand), behavioral issues relating to tiger capture, basic handling techniques and tips, and permitting issues. Presenters included the leading tiger field researchers in Thailand.

Specimen Handling (Mahidol Veterinary Staff)

This session covered techniques for collecting and effectively managing specimens such as blood, tissue, and fecal samples collected during immobilization operations. The unit covered collection, labeling, chemical preservation, and storage equipment and techniques. The importance of careful labeling and information management was emphasized.

Telemetry, GPS, and Satellite Collars: Ecological Research and Monitoring Approaches (Dr. Dave Smith)

A common scientific goal of capturing large animals is to affix or retrieve a standard radio telemetry, GPS, or satellite transmitter collar for ecological research and monitoring. This unit also covered the technical aspects of collars and provided tips for how to get the most out of investigations using these tools. Collaring studies have provided the basis of much of our understanding of the basic ecology and behavior of wild felids. This unit covered the many issues that should be considered when selecting collars and associated positioning systems from an ever-growing list of choices.

Additional presentations provided participants with a look at several current investigations utilizing telemetry collars in Nepal, Bangladesh, and Thailand.
HANDS-ON TRAINING: CAPTURE, IMMOBILIZATION, AND HANDLING OPERATIONS

General
The purpose of these operations was to provide participants with hands-on experience necessary for confidently organizing and carrying out operations on their own.

Primates: Macaque

Subject Animal(s): A large population of resident macaques at a temple in Ratchaburi province.

Operational Goals: Demonstration of a capture of a single animal in a high-energy, high-risk environment using a reach-in arm snare.

Approach and Capture: A pick-up truck was used to safely transport baited snares to the trap location. When a macaque was captured, the tethered animal could be safely separated from the large group, netted and immobilized with a jabstick.

Handling Operation: The immobilized animal was removed from the snare, given an antagonist, and transported back to the capture site.

Release and Recovery: The target animal was released and observed until the effects of the drug were no longer visible.

Post-operation Assessment: This operation demonstrated how careful planning and relatively simple technology can be used to capture primates while minimizing danger to the subject animal and humans involved in the operation.

Carnivores: Tiger

Subject Animal(s): Four tigers (Panthera tigris). See individual data below.

Operational Goals: 1) Immobilize and perform routine physical exams and blood specimen collection on three tigers in small enclosures. 2) Capture, immobilize, and perform routine physical exams and blood specimen collections on one tiger in a large (2 ha) semi-natural enclosure.

Preparation and Drugs: A variety of immobilization drugs were used as 1) a demonstration of their overall safety for the subject, and 2) as a controlled comparison of their relative efficacy.

Approach and Capture: Three individuals were darted in small enclosures using compressed air drug delivery systems. A fourth tiger, in a large outdoor enclosure, was captured in a leg snare that was set up by participants. Once snared, this tiger was immobilized via a dart fired from a .22 caliber Palmer dart rifle.

Handling Operation: Participants broke into groups and worked with instructors to carry out immobilization, physical assessment and sample collection procedures. Each participant was given the opportunity to work directly with animals to practice the
collection of blood samples, take measurements, etc.

Release and Recovery: Recovery took place under very controlled conditions in enclosures. This provided a close look at the efficiency of antagonist drugs.

Post-operation Assessment: See below. These tiger immobilizations were used for a detailed side by side comparison and discussion of drug choice and how it relates to the needs of unique situations.

Comparison of individual operations:

<table>
<thead>
<tr>
<th>Name of Animal</th>
<th>Sex</th>
<th>Age (yrs)</th>
<th>Est. Weight</th>
<th>Date</th>
<th>Tranquilizer (mg)</th>
<th>Anesthetic (mg)</th>
<th>An tagonist</th>
<th>Delivery Method</th>
<th>Induction Period (min)</th>
<th>Down Period (min)</th>
<th>Recovery Period (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dollar</td>
<td>M</td>
<td>12-15</td>
<td>120 kg</td>
<td>11-Jan-07</td>
<td>Metatomidrine (8.4)</td>
<td>Ketamine (360 mg)</td>
<td>Atipamazol (42 mg)</td>
<td>Blowgun</td>
<td>2</td>
<td>81</td>
<td>5</td>
</tr>
<tr>
<td>Sing</td>
<td>M</td>
<td>3</td>
<td>150 kg</td>
<td>11-Jan-07</td>
<td>Xylazine (300 mg)</td>
<td>Ketamine (525 mg)</td>
<td>Yohimbine (3.75 mg)</td>
<td>Blowgun</td>
<td>13</td>
<td>85</td>
<td>18</td>
</tr>
<tr>
<td>Bay</td>
<td>F</td>
<td>?</td>
<td>100 kg</td>
<td>11-Jan-07</td>
<td>Xylazine (100 mg)</td>
<td>Ketamine (100 mg), Zolatil (100 mg)</td>
<td>Yohimbine (12.5 + 12.5 mg)</td>
<td>Blowgun</td>
<td>5</td>
<td>85</td>
<td>99</td>
</tr>
<tr>
<td>Silatong</td>
<td>M</td>
<td>10</td>
<td>170 kg</td>
<td>11-Jan-07</td>
<td>Telezol (Zolazapam & Tiletamine) (800 mg)</td>
<td></td>
<td></td>
<td>Palmer .22 (Brown Charge) + Palmer Aluminum Dart</td>
<td>4</td>
<td>196</td>
<td>0</td>
</tr>
</tbody>
</table>

Carnivores: Asiatic Black Bear

Subject Animal(s): Four Malayan Sun Bears (*Helarctos malayanus*).

Operational Goals: Immobilize and perform routine physical exams and blood sample collection on four bears.

Preparation and Drugs: Animals were drugged with either Zoletil® or Ketamine/Xylazine mix (as per Handbook of Wildlife Chemical Immobilization).

Approach and Capture: All drugs were delivered via darts and blowguns.

Handling Operation: All bears were immobilized, weighed, given a complete physical examination, had blood and fecal samples collected, and were given general antibiotics.

Release and Recovery: Animals were allowed to recover without an antagonist.
Post-operation Assessment: As teams worked independently to organize logistics and carry out the bear operations, a debriefing session allowed for teams to compare notes and learn from the experience. Among other things, accurately estimating the weight of subject animals was considered an area for improvement.

PARTICIPANT EVALUATION

Although a formal evaluation of individual participants was not carried out, the following observations summarize workshop facilitators’ observations:

- Participants displayed a high degree of interest in the material.
- Participants from different backgrounds and nationalities worked well together during practical exercises.
- For the most part, participants showed a high degree of initiative in asking relevant questions and participating in hands-on exercises.

WORKSHOP EVALUATION

A critical evaluation of the workshop consisted of 1) an evaluation worksheet filled out by participants and 2) a course evaluation session with all instructors and facilitators. The results of the participant evaluation are shown below:

The weakest area of the evaluation was course planning and organization. Although it is likely that some of the reason for this was the fact that this was the first time this course was organized, instructors and facilitators carefully discussed how planning and organization could be improved in the future. The only other slightly lower area of the evaluation was course content. Here, the instructors felt that improvement could be achieved with minor changes in line with specific feedback from participants (see below).

Some comments on course evaluation forms:

“I would like to see a similar course but with a focus on other species”

“The veterinary technicians were great!”

“This was an incredible opportunity. The setting and resources were great”
“The course should be a bit longer to allow more time for both classroom and hands-on instruction.”

“There should be more opportunity for evaluation of participants during the workshop.”

In general, the instructor/facilitator evaluation of the course reflected these same compliments and concerns. One extremely valuable element of the course was informal interaction during and after dinner each evening, which provided time for individuals to ask focused questions of instructors and allowed participants to share information from diverse project and country perspectives.

The preparation of this report was identified as a key tool for evaluating the course and improving it in the future.

RECOMMENDATIONS

Based on both structured and informal discussion among all workshop participants, the following recommendations are intended to provide direction and focus to activities supported by and/or initiated at this workshop:

1. Encourage participants to draw on the expertise of other participants and instructors in designing and carrying out their research and other projects. The contact information in this report should serve as a starting point for this.

2. A strong element of the workshop was the ratio of participants to subject animals and the ability to work independently to carry out practical operations in small groups. Future workshops should strive to maintain low student-to-teacher and low student-to-subject animal ratios.

3. Future workshops could identify and engage instructors with expertise in other taxa from other areas in the region. For example, elephant experts from Myanmar and large bovid experts from Malaysia.

REFERENCES

Pattanarangsan, Rattapan. 2006. A Review of Animal Capture and Handling Principles and Techniques (Thai Language). Faculty of Veterinary Science, Mahidol University
APPENDIX I. WORKSHOP INSTRUCTORS AND SUPPORT STAFF

Dr. Terry J. Kreeger
Supervisor, Veterinary Services Branch, Wyoming Game and Fish Department & Professor, University of Minnesota; (tkreeger@wildblue.net)

Terry is the lead author of the Handbook of Wildlife Chemical Immobilization, International Edition. He has the unique perspective of also being a Ph.D. in Wildlife Ecology. He has worked in Asia, and Africa as well as North America and has conducted immobilization workshops in many parts of the world.

Dr. Parntep Ratanakorn
Associate Professor and Dean, School of Veterinarian Science, Mahidol University, Thailand, +66-2-441-5242; 81-802-0616 (vsprt@mahidol.ac.th)

Parntep is an active member of the World Small Animal Veterinary Association and American Association of Zoological Veterinary (AAZV) and has experience working with a wide range of species from elephants to gibbons. His current interests include developing techniques for screening free ranging wildlife for disease. Parntep is a member of Thailand’s Bird Flu taskforce that is helping to investigate the role of domestic and wild birds in the spread of bird flu.

Dr. J.L. David Smith
Professor, Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, USA; (jlds@umn.edu)

David is a tiger conservation biologist with field experience in nearly every part of the tiger’s range. His work has focused on tiger ecology and behavior, landscape-scale tiger distribution and habitat modeling; and large-scale tiger and prey monitoring. His current work also attempts to develop the capacity of both government and local people to monitor biodiversity through participatory conservation approaches. Dave currently advises the Thailand Tiger Project, based at Huai Kha Khaeng Wildlife Sanctuary.
Mr. Pornchai Pathumrattanathan
Chief, Khao Pratubchang Wildlife Breeding Center, Department of National Parks, Wildlife and Plant Conservation, Thailand, +66-81-710-0371 (pratubchang@hotmail.com), (Forestry_23@yahoo.com)

Pornchai is an expert in animal handling and capture. He has developed a variety of traps and wrist snares for birds, primates and tigers and has recently patented a unique tiger foot snare which is increasingly being used in tiger research projects in the region. Pornchai has traveled internationally as a trapping/animal handling advisor to other tiger research projects.

Dr. Rattapan Pattanarangsan, D.V.M.
Lecturer, Faculty of Science, Mahidol University, +66-2-441-5242, +66-081429480;
(vsrp @mahidol.ac.th)

Rattapan has played a major advisory and research role in Southeast Asia’s avian flu outbreak and other international conservation medicine issues. He is a knowledgeable zoologist with experience in immobilizing and working with a wide variety of species in the wild.
Veterinary Support Staff/Assistant Instructors:

The following staff from a number of Thai agencies and zoos and advanced DVM students from Mahidol University provided technical support and encouragement throughout the workshop:

Ms. Waradee Buddhakosai, Faculty of Veterinary Science, Mahanakorn University of Technology; [war_exo@hotmail.com]
Ms. Luxsana Prasittichai, Khao Pratubchang Wildlife Breeding Center; [Ong_sak@hotmail.com]
Ms. Wanlaya Tipkantha, Research & Conservation Division of Zoological Organization; [wanraya_v62@yahoo.com]
Ms. Roschong Boonyarittichaikij, Faculty of Veterinary Science, Mahidol University; [vsrby@mahidol.ac.th]
Ms. Suppalak Kaewkwan, Mahanakorn University of Technology; [r_um2004@yahoo.com]
Ms. Pavinee Charoenyongyoo, Faculty of Veterinary Science, Mahidol University; [modvet013@yahoo.com]
Ms. Sarin Suwanpakdee, Mahidol University; [gam_gena@hotmail.com]
Ms. Jarunee Siengsanan, Faculty of Veterinary Science, Mahidol University; [hjar@yahoo.com]
Mr. Chovalit Nakthong, Faculty of Veterinary Science, Mahidol University; [vsnt@hotmail.com]
Mr. Anuwat Wattanarorasate, Safari World Zoo; [Docterball@hotmail.com]
Ms Ruangrat Bhuttirongkawat, Faculty of Veterinary Science, Mahidol University

APPENDIX II. COURSE PARTICIPANTS

Winan Wirana
Khao Son Wildlife Breeding Center, Department of National Park, Wildlife and Plant Conservation, +66-84-635-3886; [khozon@hotmail.com]

Adisorn Kongphoemphun
Chief, Om Koi Wildlife Breeding Center, Department of National Park, Wildlife and Plant Conservation, +66-81-884-8706; [adisomkong@yahoo.com]

Amnuay Puangkam
Pangtong Wildlife Breeding and Research Station (Mae Hong Son), Department of National Park, Wildlife and Plant Conservation, +66-81-883-8238
Mr. Jaroen Kaewmee
Pangtong Wildlife Breeding and Research Station (Mae Hong Son), Department of National Park, Wildlife and Plant Conservation, +66-87-179-3739
Charoen is an animal husbandry specialist and is interested in building his wildlife immobilization and handling skills.

Mr. Somporn Pakpian (Don)
Khao Nang Rum Research Station, Huai Kha Khaeng Wildlife Sanctuary, Department of National Park, Wildlife and Plant Conservation, +66-87-876-0531; (Smpkp-d@hotmail.com)
Somporn graduated in wildlife and grassland management from Kasetsart University. He now works on tiger population monitoring at Khao Nang Rum Wildlife Research Station, Huai Kha Khaeng, Uthai Thani.

Mr. Supagit Winitpornsawan
Wildlife Research Division, Department of National Park, Wildlife and Plant Conservation, +66-81-486-7896; (v-Supagit@hotmail.com)
Supagit is now working on several applied research projects:
- Application of Geographic Information System (GIS) for mapping and distribution of Asian elephants in Phu Kheio Wildlife Sanctuary, Chaiyaphum Province, Thailand
- Rapid ecological assessment of large mammals and birds in the Western Forest Complex, Western Thailand
- Assessment of the status, distribution, abundance, and population of large and endangered mammals in key forest complexes in Thailand

Mr. Mongkol Kamsook
Research Officer, Phu Kheio Wildlife Sanctuary, Department of National Park, Wildlife and Plant Conservation, +66-89 –573-6783; (Pitakpri@hotmail.com)
Mongkol received his Master of Science degree in Forestry from Kasetsart. He is now doing a study on the seasonal impacts to wildlife from vehicles on the Pangmaung-Tung Kamung road in Phu Kheio Wildlife Sanctuary.

Mr. Nont Khieowan
Research Field Biologist, Wildlife Conservation Society, +66-89-175-7258; (Nont-KW@hotmail.com)
Nont received a bachelor degree in wildlife biology under the Faculty of Forestry, Kasetsart University. He is now a Master of Science candidate focusing on wildlife management. Nont previously worked as a wildlife survey team leader for the WEFCOM project.

Mr. Dusit Ngo-prasert
+66-81–710-4734; (Ndusit@gmail.com)
Dusit is a PhD student in Conservation Ecology at King Mongkut's University of Technology, Thailand. He is interested in the ecology and conservation of large mammals, especially omnivorous mammals. He has extensive experience doing research on tigers and leopards in Khaeng Krachan and Khao Yai National Parks and Huai Kha Kaeng Wildlife Sanctuary. At present, he works on bear conservation and environmental education.
Ms. Passanan Cutter
Research Field Biologist, Fishing Cat Status and Conservation Project, Thailand, +66-81-944-1985; (namfonb @Yahoo.com)

Passanan is a field biologist and documentary film producer. Currently she is studying the status and ecology of fishing cats at sites throughout Thailand. She will soon be starting a Master of Science degree in Conservation Biology at the University of Minnesota, USA.

Mr. Kitiwoot Changcharoen (Khong)
Kasetsart University, +66-81-196-5435; (hoykhong yahoo.com)

Kittwoot received his bachelor’s degree in conservation biology in 2006 and is now a Master of Science candidate in Kasetsart University’s Zoology Program. He plans to pursue veterinary study after he finishes his master’s degree.

Mr. Klinsak Pitiwong
Mae Lao Wildlife Breeding Center, Department of National Park, Wildlife and Plant Conservation, +66-81-764-5127; (foresty.27@hotmail.com)

Mr. Sakol Kanjanarajit
Huai Sai Wildlife Breeding Center, Department of National Park, Wildlife and Plant Conservation, +66-81–954-9199; (K-SaKol2006 @ hotmail.com)

Mr. Chamnan Kaengchan
+66-81-321-5480

Mr. Yongyut Meesangprao
Wildlife Conservation Division, Department of National Park, Wildlife and Plant Conservation, +66-81– 886-3773; (Ymesang @ hotmail.com)

Mr. Rafiqul Islam Chowdury
Assistant Conservator of Forests, Cox’s Bazaar North Forest Division, Bangladesh Forest Department, +880-171-148-2898

Rafiqul is has been working for the Bangladesh Forest Department for the last 13 years. He earned his post-graduate diploma at the Wildlife Institutes of India, Dehradun. Prior to his current posting, Rafiqul worked in the Bangladesh Sunderbans for 3 years. His responsibilities include supervising both forest conservation efforts and wildlife management. Rafiqul is interested in organizing a training course such as this one in Bangladesh.
Mr. Mohammad Ali
Assistant Conservator of Forests, Chittagong Wildlife Management and Nature Conservation Division, Bangladesh Forest Department, +880-31-761-637; (deytk2bdonline-ctg.com)

Mohammad Ali is an assistant conservator of forest at the Office of the Divisional Forest Affair, Wildlife Management and Nature Conservation Division Chittagong, Bangladesh Forest Directorate, Ministry of Environment and Forests, Bangladesh. He is now working as a wildlife manager, responsible for safari parks and the protected areas within the Bangladesh Forest Department.

Mr. Abu Naser Mohsin Hossain
Assistant Conservator of Forests, Divisional Forest Office, Sylhet Forest Division, Bangladesh Forest Department, +880-171-118-9877; (anasermh@yahoo.mail)

Naser has been working for the Forest Department of Bangladesh for the last 13 years. His main duties are forest management including forest protection. He also supervises plantation work and administration. He has forest research in the Sunderbans and was a member of the Joint Tiger Census in 2004. In 2005, he and Adam Barlow captured and collared a Royal Bengal Tiger, the first radio-collared tiger in Bangladesh. Naser intends to continue to focus on the management of protected areas in Bangladesh which now represent almost 20% of the country's land area.

Mr. Wangdi
Forest Officer, Thimphu Forest Devision, Department of Forestry, Ministry of Agriculture, Bhutan, +975-237-1257; (Krange office@ druknet.net.bt)

Wangdi’s responsibilities include forest ranger administration, wildlife protection and conservation, wild animal rescue, and forest law enforcement.

Mr. Jesse Kroese
University of Minnesota Conservation Biology Graduate Program, +1-651-431-1354; (jessekroese @gmail.com)

Jesse has a background in conservation science and environmental education, working in these capacities for the US National Park Service in Redwood National Park, California; the Mississippi National River and Recreation Area, Minnesota; and Glacier Bay National Park, Alaska. Jesse has spent the last 3 months in Thailand working closely with Thailand Tiger Project researchers and faculty and graduate students from Mahidol University to put in place the logistical framework for his PhD research on tiger population structure across western Thailand.

Mr. Peter Cutter
Research Associate, Smithsonian Institution, and University of Minnesota Conservation Biology Graduate Program; (Peter@conservation asia.org)

Peter is a conservation biologist and educator with training experience in the US, Thailand, and Cambodia. After completing a landscape-scale survey of tiger and tiger prey in western Thailand, Peter helped edit Thailand’s Tiger Conservation Action Plan and has worked with Thailand’s Department of National Parks, Wildlife, and Plant Conservation to develop carnivore monitoring programs in several protected areas. Peter is now completing a PhD on systematic approaches to conservation planning in Cambodia and Thailand.
Mr. Robert Steinmetz
World Wide Fund for Nature (WWF) and University of Minnesota Conservation Biology Graduate Program, +66-2- 524-6128; (Roberts @ wwf greatermekong.org)

Rob has been researching wildlife in Southeast Asia for over 15 years. For his PhD work at the University of Minnesota, he has focused on the comparative ecology of Malayan sun bears and Asiatic black bears. He has coordinated long term wildlife population studies in Thung Yai Naresuan Wildlife Sanctuary and is currently studying tiger and prey distribution in Kui Buri National Park in Western Thailand.

Mr. Adam Barlow
Sunderbans Tiger Project and University of Minnesota Conservation Biology Graduate Program; (garl0048@umn.edu)

Adam received an MSc in conservation biology at University of Minnesota and is working on a PhD at the University of Minnesota. He worked for three years in Nepal focusing on camera trapping tigers and has also assisted on the Tiger project in Huai Kha Kaeng Wildlife Sanctuary, Thailand. He is currently coordinating the Sunderbans Tiger Project in Bangladesh.

Trarasok, Head of Huai Kha Kaeng Wildlife Breeding center

Mr. Thanakorn Pasomsri
Huai Kha Kaeng Wildlife Breeding and Research Station (Uthai Thani), Department of National Park, Wildlife and Plant Conservation, +66-81–058-5296; (thanakorn03@hotmail.com)

Mr. Chaiyaporn Charreesaen
Doi Tung Wildlife Breeding Center, Department of National Park, Wildlife and Plant Conservation, +66-81–768-5868; (Poom-forest @ hotmail.com)

Mr. Banpot Maleehuan
Banglamung Wildlife Breeding Center, Department of National Park, Wildlife and Plant Conservation, +66-81-861-3187; (banpot 87@hotmail.com)

Pongchai Dangsee
Krabok Koo Wildlife Breeding Center, +66-89-589-9167; (Pongchai@Yahoo.com)

Mr. Surasak Anumethong
Banglamung Wildlife Breeding Center, Department of National Park, Wildlife and Plant Conservation, +66-81-524-9100
Mr. Sarawut Taksinoros
Livestock and Wildlife Hospital, Mahidol University, Sai Yok, +66-34–569-033; (harvestmoon-hams@hotmail.com)

Mr. Chawalit Naktong
Mahidol University, +66-86–033-9272; (vscnt@mahidol.ac.th)

Mr. Sarawut Taksinoros
Livestock and Wildlife Hospital, Mahidol University, Sai Yok, +66-34–569-033; (Harvestmoon- hams@hotmail.com)

Mr. Wanraya Tipkantha
Research and Conservation Division, Zoological Parks Organization, Thailand, 085-276-6880; (Wanraya - V62@yahoo.com)

Rungroj Angkuratipakorn
Khao Pratubchang Wildlife Breeding Center, Department of National Park, Wildlife and Plant Conservation, +66-81-795-3880
APPENDIX III. COURSE SCHEDULE

- = Classroom Instruction ✤ = Hands-on Practical Activity

<table>
<thead>
<tr>
<th>Date</th>
<th>Activity / Topic(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 January (Monday)</td>
<td>PM</td>
</tr>
<tr>
<td>9 January (Tuesday)</td>
<td>AM</td>
</tr>
<tr>
<td></td>
<td>PM</td>
</tr>
<tr>
<td></td>
<td>Evening</td>
</tr>
<tr>
<td>10 January (Wednesday)</td>
<td>AM</td>
</tr>
<tr>
<td></td>
<td>PM</td>
</tr>
<tr>
<td></td>
<td>Evening</td>
</tr>
<tr>
<td>11 January (Thursday)</td>
<td>AM</td>
</tr>
<tr>
<td></td>
<td>PM</td>
</tr>
<tr>
<td></td>
<td>Evening</td>
</tr>
<tr>
<td>12 January (Friday)</td>
<td>AM</td>
</tr>
<tr>
<td></td>
<td>PM</td>
</tr>
</tbody>
</table>
APPENDIX IV. A REVIEW OF ANIMAL CAPTURE AND HANDLING PRINCIPLES AND TECHNIQUES (THAI LANGUAGE)

Dr. Rattapan Pattanarangsan, D.V.M., Faculty of Veterinary Science, Mahidol University

เรื่อง การจับบังคับสัตว์ป่า

ดร. น.ส. รัฐพันธุ์ พัฒนรังสรรค์

คณะสัตวแพทยศาสตร์ มหาวิทยาลัยมหิดล

กฎพื้นฐานที่สุดในการจับบังคับสัตว์ป่า

1. คนปลอดภัย – สัตว์ปลอดภัย – ทำงานได้

ข้อค่าจึงต้องระวัง

1. ไม่มีการจับบังคับสัตว์ป่าที่ปลอดภัยกับสัตว์ป่า
 (จะลดความเสี่ยงต่อสัตว์ได้อย่างไร เครื่องมือ แผน ประสบการณ์ ภาวะประคณ์)
2. ไม่มีเครื่องมือใดๆ วิธีการใดๆ ที่มีประสบการณ์มากกว่าสัตว์ป่า
 (มีวิธีที่ดีกว่าหรือไม่ ไม่จับได้หรือไม่)
3. กุมแน่นไม่ถูก
 (เดินด้วย ทำไปทำนี้ ทำไปทำนั้น ไร้ความรู้ใจ)
4. ความจัดหาต้องระลึก ความจับต้องต่ำ
 (มีความรู้จักรู้ใจ มีการประเมินสถานการณ์ตลอดเวลา มีแผน หลายแผน)
5. การวางแผนที่ดี เครื่องมือที่พร้อม ประสบการณ์ที่มี ช่วยลดความสูญเสีย
 (แผนสอดคล้อง มีที่มีการจับคู่)
6. รู้จักพื้นที่ทำงาน
 (มีวางแผนเครื่องมือที่ทำงาน)
7. ใช้การปรับเปลี่ยนสิ่งแวดล้อมให้เป็นประโยชน์ได้อย่างไรบ้าง
 (ลดความพิษ มีการปรับลดวิ่ง ลดเสียงที่เป็นกว้าง)
8. ความประมาทเป็นเหตุการณ์ความสูญเสีย
 (มีการรักษา ไม่ว่าจะใคร หรืออะไร)
9. วางแผนทำงานที่ดี (รักษาสัตว์ กำหนด)
10. มีความรู้จักรู้ใจ มีการจับคู่ มีการพยาบาลคนเจ็บ
11. มองทะลุเงื่อนเวลา (สัตว์ก่อนจับ ตอนจับหลังจับ)
12. เมื่อจับสัตว์แล้ว ต้องมีความสัมพันธ์ มีความร่วมรู้ความสัมพันธ์
 (ผู้ซึ่งมีความรู้จักรู้ใจ ขับเคลื่อนกิจกรรมสัตว์ที่สุข ความรักษา ความร่วมมือ ทั้งใน-transparent ที่ซูกังสิ่งต่าง)
13. ทำไปแล้ว ต้องทำให้ถูกต้องได้อย่างไร
 (การพัฒนาไม่มีจิตจักรกัด ความมีจิตจักรจัด)

วัตถุประสงค์เชิงปฏิบัติในการจับบังคับสัตว์ป่า

เพื่อจับสัตว์เพื่อใช้ประโยชน์ เพื่อความสุขภาพ เพื่อการสำรวจ เพื่อควบคุม ลดการบกพร่อง ลดการรีบพัก
 เพื่อกักจับ

- 25 -
สัตว์ป่า

- สัตว์ป่าใน Animal Kingdom 1.5 – 30 ล้านชนิด (ตัวเลขประมาณกลางฯ 6 ล้านชนิด)
- สัตว์ป่าแบ่งตามกลุ่มชนิด นั่นนั่นนี้

สิ่งที่ต้องมี ก่อนจับบังคับสัตว์

- มีแผนย้ายตัวสัตว์ เช่น แผนยก แผนสถานที่ แผนเวลา แผนปล่อยขยายแผน
- มีแผนเตรียมการจับป้องกันความสูญเสียใดๆ ทั้งที่จะเกิดกับคนและกับสัตว์
- มีเครื่องมือที่ดี สภาพพร้อมใช้ ปัจจุบันช่วงวันที่ ตลอดเวลา
- มีกระบวนการ มีความเข้าใจในสถานการณ์ ปฏิบัติ
- มีการแบ่งงาน ตามหน้าที่ มีการตั้งใจและมีการตัดสินใจและสั่งการที่ดี

สิ่งที่ต้องรู้ก่อนจับบังคับสัตว์ป่า

- จับตัวอะไร มี ซิ่ว จิตใต้ สังคม อย่างไรบ้าง
- กำหนดพื้นฐาน โดยตรงจะทำ vital sign ในสัตว์ชนิดนั้น หรือตัวนั้น
- capture myopathy 3 ชนิด
- side effect ที่จะเกิด จะเกิด อย่างไรบ้าง
- Sense organ ที่สำคัญของสัตว์ การจัดการกับระบบนั้นๆ สัตว์ไวต่อเสียง สัตว์ไวต่อการเห็น สัตว์ไวต้องแสงสว่าง สัตว์ไวต้นกลม
- ทำทะไลของสัตว์ ที่แสงออก นั่งข้ามเดินไป รับการสื่อสารของสัตว์ได้ดีต่อ ออก หรือสุด
- สามารถควบคุมการ สามารถปลอดภัย การแบ่งปันจะเป็นตัวการทบทวนความคิด
- จะจับตัวไหน แสบะได้อย่างไร จะจับที่ไหน
- ตัวเป็นชนิดเช่น ช่วงที่จะ ช่วงเป็นสังคม ช่วงผลิต อยู่ผลิต อยู่พื้นที่ในสูง ความเข้ากัน ทิศทางสัตว์
- การเลือกพื้นที่ที่งานด้วย
- ความเสี่ยงของระบบทั้งชนิดที่เลือกใช้
- flight distance – fight distance เจตุ๊กของกี่ หรือตัวนั้น ให้มุมปลอดภัยที่จะเจ้า
- วิธีที่สั้นจะทำร้ายตน

การเตรียมการก่อนจับผสัตว์ ถ้าจะต้องจับชั่วโมงๆ

- ปฐมทัศน์ สถานที่ย้ายตัวให้เหมาะสม (แสง เสียง ชั่วคราวที่เดินที่ ขนาดพื้นที่ ปก÷น้ำ ตลอดเวลา) ก่อนจุด ดวงใจใน วิถี ไม่ตรึง ไม่ทะเล จัดการจับ ของผู้ควบคุม
- จัดการสถานที่ที่จะช่วยตาม อยู่จะมีความช่วยแรงงาน แสงสว่าง
- การจัดการชีวิตตามรูปแบบ
- การคัดเลือกให้เตรียมพร้อม ทำให้ช่วยได้ ได้อย่างไรบ้าง ใช้เวลาเท่าไร
การจับขั้นตอนที่ผ่านภาพ

(Physical Restraint)

แบบไม่ใช้เครื่องมือ

- การจับแบบรูปภูมิภาค เช่น จับหน้าท้องหรือหัวเชิงๆ การจับลูกอมหรือลืมออก การจับหน้าอกของสัตว์ขนาดเล็ก การจับต้องกระชาก
- ซึ่งการจับตามชนิดของกลุ่มสัตว์ จะได้ถ้าต่อไปไปแต่ละกลุ่ม

การใช้ถุงมือ

- ป้องกัน ลดความแรงในการกัด
- การจับด้วยถุงมือ เช่น จับโคนหาง หรือจับเล็บ
- ลดการรับรู้ในการกดทางเดินหายใจ
- ความสะอาดของถุงมือ การถูกเฉียด นิ้วเท้า หรือแผล

การใช้มีดคม

- ใช้ผ้าขนหนู เพื่อป้องกันอย่างเช่น reptile
- ให้ผ้ารั้ว ที่จะให้ระวังนิ้วไม่วาง
- ลดแรงกระทบต่อมือ
- ใช้ถุงมือหนังที่หนาพอ
- ความสะอาดของผ้า แสดงถึงน้ำจากกระเทย สัตว์พิษภัย

การใช้สวิง

- การรัดที่น้ำ โดยใช้สวิง ให้สัตว์ที่จะใช้สวิง
- พบกับการรัดที่ที่น้ำ ให้พร้อมที่จะใช้สวิง จับกลุ่มสัตว์
- ใช้สวิงบางทีใช้ผ้าทึบ
- บางทีที่รัดที่สัตว์
- ใช้หัวของผลิตภัณฑ์ที่เหมาะสม ให้กับสัตว์ในที่ที่เหมาะสม
- การใช้หัวอาจไม่ใช้ที่จะใช้รวมกัน
- ที่น้ำอาจไม่ใช้ที่ที่น้ำเป็นเวลา
- สัตว์ที่รัดที่ที่น้ำ หรือที่น้ำเป็นเวลา
- ที่น้ำอาจไม่ใช้ที่ที่น้ำที่มีความถี่ที่เหมาะสม
- การจับจากน้ำอาจไม่ใช้ที่ที่น้ำที่มีความถี่ที่เหมาะสม
- ใช้สวิงบางทีใช้ผ้าทึบ

การใช้ตาข่าย

- มีหลายขนาด เช่นตาข่ายขนาดเล็กที่เรียกว่า mist net จับน้ำ ตาข่ายดักภาพ มักใช้จับสัตว์น้ำ หรือสัตว์กินฟืนขนาดกลาง
- เมื่อขนาดเล็ก
- ใช้ตาข่ายแบบช่วงที่เหมาะสม
- ใช้จะต้องใช้ตาข่ายที่เหมาะสม
- แบบพิเศษ ใช้ตาข่ายแบบช่วงที่เหมาะสม
- ตาข่ายที่มีขนาดกลาง ตาข่ายในที่ที่มีขนาดกลาง
การใช้แผ่นสองรูปแบบ (SQUEEZE BOARD)
- มีหลายวัสดุ เช่น ครีมกลูต้า ไดคิริ โลหะ หลักการคือมีดามจับที่ใช้ต้านแรงชนได้ มีการมองเห็นของผู้จับ เนื่องจากแผ่นลองรู้สึกได้ ใช้จับกันไม่ให้สัตว์หนีได้ด้วย
- ใช้กับหัวชุด รวมถึงกั้นหัว หรือใช้กับสัตว์สัมพันธ์ที่มีหัวจับแนวกลับเพื่อจัดอยู่หรือตรวจ ใช้กับสัตว์ขนาดเล็กเช่นสัตว์เลี้ยง ขนาดเล็กหรือกลาง
- ทำความสะอาดด้วยน้ำที่เหมาะสมหลังการใช้

การใช้กระรอกแบบ (SQUEEZE CAGE)
- ให้การจับครั้งแรกไปแล้ว ต้องการการตรวจวิเคราะห์ หรือ เลือก ผลิตภัณฑ์อื่นๆ
- ขนาดเหมาะสม หากเป็นสัตว์ที่ต้องการพื้นที่แสดงแล้วต้องมีกลยุทธ์ถูกต้องเพื่อควบคุมผลลัพธ์
- เตรียมแผ่นที่สอดคล้อง อาจมีเส้นผ่านร่างกายให้สัมผัสไปได้ แต่ยังไม่ใช้
- เมื่อรักษาได้ความคล่องแคล่วในการเคลื่อนหน้า แต่ถ้าการลงมือเรื่องยุ่นยุ่นและน่าต้องการสัตว์ได้ต้องใช้วิธีการ การออกแบบที่มี เปิดช่องบางช่องให้สาบานได้ ล้างทำความสะอาดด้วยน้ำซึ้งได้

การใช้ ห่วงขัด (SNARE)
- มีดามและห่วงขัดที่จับคู่กันได้มีแผ่นรองที่รองรับผู้จับมาก่อน ทำให้ผู้จับเป็นสัตว์มีขนาดเท่ากันที่หยุดนิ่ง
- เมื่อใช้งานได้เสร็จ ห่วงขัด ใช้ดัม ใช้ดัก ใช้ยับยั้งเพื่อต่อ
- ใช้รัดผลิตภัณฑ์เหล็ก สแผ่นโลหะห่วงห่วงใช้ขยายขัด
- สัตว์ชนิดใด ต้องใช้ห่วงขัดที่ตรงกับสัตว์นั้นๆ
- ไม่ว่าการใช้ห่วงขัดก็ไม่จำเป็นต้องรัดสัตว์ ถ้ารัดด้วยรัดรูปเปลี่ยนยืดหยุ่นให้สัตว์หายใจได้เพียงพอ
- ประสาทช่องที่มีไว้ ต้องระลึกใช้กับสัตว์ขนาดใหญ่
- ทำความสะอาดด้วยน้ำที่เหมาะสมหลังการใช้

การใช้ตะเข็บ (hook) หรือ ตัวแขวนระยะยาว (tong)
- มีใช้ยุ่น ใช้เชือกหัวกับแท่น แล้วจับสัตว์ให้ยุ่น
- อาจใช้ตัวแขวนเช่นห่วงขัด ต้องใช้หัวที่มีน้ำหนัก
- บางทีใช้กับลูกเล็กเช่นสัตว์เล็กๆ บางทีใช้กระรอกหลอด
- ทำความสะอาดด้วยน้ำที่เหมาะสมหลังการใช้

การใช้ทองเหลือง
- มีใช้ทองเหลือง มีรูหายใจ ที่ปลายทาง
- ในกรณี จะใช้ตะเข็บหัวรั่วให้ยุ่นในสาย หรือใช้ตะเข็บหลอดแล้วเมื่อจับหัวเด็กเข้าไปในทอง ต่อมาต่อในทองแล้วจับสัตว์ เล็กทางกายกับส่วนที่เหลือที่โล่ง ออกมาจากทองได้
- ทำความสะอาดด้วยน้ำที่เหมาะสมหลังการใช้

การใช้ถุงผ่า
- เพื่อใช้ขนสัตว์บางชนิด เช่น นก ไดคิริ หลอด แผ่นสองรูปแบบ สัตว์ชนิดเฉพาะสัตว์เลี้ยง
- ถุงจะเป็น visual barrier และเป็นพื้นที่ใหม่ (ไม่ได้กัน โค นก ทุกชนิด)
- ระบายความร้อนของสัตว์ที่มีแผ่นสองรูปแบบหลังการใช้ และควรจะเป็นนกที่มีศูนย์กลางอยู่ในถุงกลับเพื่อให้กั้นกับการพรมิ่งเพาะที่มี ผนังถังกับถุงให้ดี เมื่อมีการจับоловสัตว์หรือแม้กระทั่งการหลุดออกจากถุง
- บางครั้งมีการใช้กระรอกสำหรับการจับข้าม ผนังข้อต่อผนังนก ให้ได้ผ่านและออกจากใช้พื้นที่ระบบพรมิ่งเพาะต้านการเคลื่อนในทาง

การใช้แผ่นสองรูปแบบ (SQUEEZE BOARD)
- มีหลายวัสดุ เช่น ครีมกลูต้า ไดคิริ โลหะ หลักการคือมีดามจับที่ใช้ต้านแรงชนได้ มีการมองเห็นของผู้จับ เนื่องจากแผ่นลองรู้สึกได้ ใช้จับกันไม่ให้สัตว์หนีได้ด้วย
- ใช้กับหัวชุด รวมถึงกั้นหัว หรือใช้กับสัตว์สัมพันธ์ที่มีหัวจับแนวกลับเพื่อจัดอยู่หรือตรวจ ใช้กับสัตว์ขนาดเล็กเช่นสัตว์เลี้ยง ขนาดเล็กหรือกลาง
- ทำความสะอาดด้วยน้ำที่เหมาะสมหลังการใช้

การใช้กระรอกแบบ (SQUEEZE CAGE)
- ให้การจับครั้งแรกไปแล้ว ต้องการการตรวจวิเคราะห์ หรือ เลือก ผลิตภัณฑ์อื่นๆ
- ขนาดเหมาะสม หากเป็นสัตว์ที่ต้องการพื้นที่แสดงแล้วต้องมีกลยุทธ์ถูกต้องเพื่อควบคุมผลลัพธ์
- เตรียมแผ่นที่สอดคล้อง อาจมีเส้นผ่านร่างกายให้สัมผัสไปได้ แต่ยังไม่ใช้
- เมื่อรักษาได้ความคล่องแคล่วในการเคลื่อนหน้า แต่ถ้าการลงมือเรื่องยุ่นยุ่นและน่าต้องการสัตว์ได้ต้องใช้วิธีการ การออกแบบที่มี เปิดช่องบางช่องให้สาบานได้ ล้างทำความสะอาดด้วยน้ำซึ้งได้
ดูเรื่องความสะอาด ผ่านข้อค่วนายปลายนะสม สร้างความเปื่อย มองเห็น

ทำการใช้เชือก

เลือกดูเชือกที่เหมาะสม เกลี้ยเชือกให้ดี (อัก หรือ พันมาจาก+ ลิขสิทธิ์ ลักษณะ) ถ้าร่างไว้ได้ใช้งานความอย่าง หากเป็นเชือกมิได้ถูกกว่าง แต่เมื่อเป็นเชือกที่ผุ ที่เล็กต่อมควรมีเชือกผ่อนในตัว ทำให้เชือกลึก มีใช้ เพื่อความทนทานและไม่บกพร่อง

ถ้าจะทำลงบนผู้ ต้องเลือกให้เหมาะสม

สามารถใช้ประกอบกันด้วย ใช้ตัวเดียวก็ได้เร็ว พื้นที่ ปล่อยไปให้พันเข้าไว้ จะลดแรงต่อของเชือก บางทีใช้ของ เส้นผ่านไปและลง สามารถใช้จูงเชือกช่วงยาวได้

การใช้เชือกให้ดีที่สุด แม้พะผากน้อย แล้ว ที่มักจะด้วยุครั้งดีและรัดดีที่ไว้ในขณะนี้ หรือผุดเชือกเพื่อให้ เนื้อกันย์รัด เข้าการมีดุสุข เช่น เหลื่อมการ

ทำความสะอาดด้วยยาฆ่าเชื้อที่เหมาะสมหลังการใช้

หลักการเบื้องต้น — ข้อพิจารณา ในการจับมันสัตว์ ป่าตัวยาสลบ

(Principals of Chemical Restraint)

วัตถุประสงค์ในการใช้สารเคมีเพื่อควบคุมสัตว์

เพื่อจับบูม เพื่อให้สัตว์-ความคลุมเครื่อง, ความสุ่ม เพื่อการยับรับการจับต้องจากกล เพื่อลดอิจฉาระของร่างกาย เพื่อให้ยังรับรู้และหลากหลาย เพื่อลดการระบุความขัดข้อง

หลักการออกแบบสารสลบที่ดี

ออกฤทธิ์ถาวรดูยาสลบได้ คล่องคายได้ คลายกลมเนื้อดี

ลดการหายใจและการล้มของหัวใจโดยไม่มีผลข้างเคียงอื่น

ไม่ระคายเคืองที่กินสัตว์ไม่มีพิษสัตว์ต่อสัตว์ใดๆ ไม่เป็นสารตกตะแกร่ง

ทางได้รับ เช่น มีก้นแรงในประเทศ

มียาแก้พฤทธิ์ (Antidote) และยาต้านฤทธิ์ (Antagonist)

มีเส้นทางหยุดการ ลดอาการต่อเนื่องนาน

มีการรับรู้ที่รวดเร็ว

ใช้ได้จากหลายชนิด มีจำนวนความปลอดภัยกว้าง (Wide safety margin)

มีการครบถ้วนกันท่าทาง (ช่วงระหว่าง ขนาดที่ออกฤทธิ์และช่วงที่ทำให้ตาย รวม) เพื่อการใช้ยา เก็บแบบยาสลบก่อนคลื่น

สามารถที่จะควบคุมในรูปแบบที่เชื่อมมาได้ เพื่อการใช้แบบร้อยละที่น้อยในสัตว์ที่ต้องการ

สามารถออกฤทธิ์ได้ในทุกทางใช้ (ลิขสิทธิ์) ได้ทั้งหมด เช่น เราด้วย

ไม่มีการรีพิจารณา หลังจากการใช้อยู่ที่ยุติการ (Renarcosis)

มีความปลอดภัยในการใช้ และความคิดเห็นของผู้ใช้

มีความคลุม ไม่ทุกข์ไม่ดัง

สามารถควบคุมเยียวยาหนักยืดได้ เป็นเนื้อเดียว และไม่เป็นปฏิกิริยา

มีการไม่สมะ และใช้ร่วมกันหรือเมื่อที่ร่อยได้

วงการสัตว์และยาสลบใช้ ทำให้มีการจัดการใช้ยาในสัตว์

ผู้ใช้ทั่วไปจะดีที่จะใช้

- 29 -
กลุ่มของชนิดยาสลบสัตว์ป่ากว่างๆ

- ยาที่ให้ก็คือกิจกรรมทาง การส่งเสียง Curare, Galamine
- ยาขึ้นผู้สื่อสาร ผลการรับรู้และการสื่อสารของยา อย่า ออกแบบ Disassociative ที่จะ ketamine
- ยากระทำด้วย ถ้าใหญ่ 2 ขนยน xylazine
- ยาส่งผู้สื่อสาร ขน diazepam
- ยาที่มีบัตรผู้สื่อสาร phenobarbiturate
- ยาที่มีนитรัส oxide, isoflurane, halothane, methoxyflurane
- ฯลฯ

สิ่งที่ต้องรู้ ต้องเตรียมพร้อม ก่อนจะให้ยาสลบสัตว์

- ชีวิตสัตว์ ข้อมูลเกี่ยวกับ และ สถานภาพสมบูรณ์ของสัตว์ ทั้งในเวลา ทางประชาชน ทางจิตใจ ช่วงอายุ ช่วงวัย การดูแลรักษา ความเจ็บป่วย
- ผู้หนักสัตว์ ซึ่ง หรือ ประมาณ
- ขนาดยา โดยะยี่ ขนาดยาที่ต้องใช้ได้ผล
- ผลลวงที่ต้องดู ผลและอาการแก่
- แผนการวางแผน
- การปรับแผนการอนุสัญญานี้ หรือ สสนการณ์จริง
- ระดับการสลบ 4 stage การตรวจว่าอยู่ที่ stage ใด

แผนการวางแผนยา

- วางแผนต่างๆ หรือ
- จะให้สมบันกแก่ไหม
- แผนแบบ – ใคร ที่จะให้ยา ความพร้อมของ
- แผนสำหรับ – ผู้ใช้จะใช้ได้ผล ผู้สัตว์จะยืนอย่างไร
- แผนเตรียมงาน ที่จะใช้บ้างหรือไม่ได้หรือ
- แผนเตรียมงาน ที่จะใช้บ้างหรือไม่ได้หรือ
- แผนที่ต้องการ การคัดเลือกชื่อสัตว์ ที่ต้องการ
- แผนการประเมิน วิเคราะห์ปัญหา ที่ต้องการไปใช้ที่นี้

ระบบการให้ยา

- ทางการกิน ไม่มีข้อที่ออกฤทธิ์ซึ่งได้ยินน้อย ไม่ทราบปริมาณการกิน เวลาออกฤทธิ์
- การฉีดด้วยมือ ที่จะมีผลต่อการใช้ยา Disassociative แต่ผลความเสี่ยงการทดลอง เมื่อให้ยาในยนกลุ่ม
- การฉีดด้วยมือ ที่จะมีผลต่อการใช้ยา Disassociative แต่ผลความเสี่ยงการทดลอง มาด้วย
- การฉีดด้วยมือ ที่จะมีผลต่อการใช้ยา Disassociative แต่ผลความเสี่ยงการทดลอง
- การฉีดด้วยมือ ที่จะมีผลต่อการใช้ยา Disassociative แต่ผลความเสี่ยงการทดลอง บอกกล่าว ฉีดยาในมือ หรือใช้ยาในมือ
- การให้ยาเป็นที่ หรือการให้ยาแบบ ระบบ 3 – 100 มิลลิเมตร ฉีดยาได้ใกล้ชิดที่สุด แต่หลังกลุ่ม
- การให้ยาเป็นที่ หรือการให้ยาแบบ ระบบ 3 – 100 มิลลิเมตร ฉีดยาได้ใกล้ชิดที่สุด แต่หลังกลุ่ม
- การให้ยาเป็นที่ หรือการให้ยาแบบ ระบบ 3 – 100 มิลลิเมตร ฉีดยาได้ใกล้ชิดที่สุด แต่หลังกลุ่ม
ผลข้างเคียงที่ไม่พึงประสงค์

- การใหญ่ท้องของแขวนจากการแขวนน้ำมันติดหลอด ค้าน้ำแขวนหลอด หรือกระชากติดหลอด กับสัตว์ที่เคยมีอยู่ หรือตัวที่มีอยู่
- การใหญ่ท้องอย่างกว้างสัตว์ ท้องไม่สะอาด หรือตัวที่มีอยู่ก่อน (Stage 2) บางทีไม่รู้ว่าสัตว์ได้รับยาจากไหนแล้ว ให้คงกลุ่มออกворотว่า แก้ไข

ภาวะแคลเซียมในเลือดต่ำ (ภาวะช็อก)
ภาวะออกซิเจนในเลือดต่ำ
ภาวะอุณหภูมิต่ำ (ออกซิเจนไปเลี้ยงเนื้อไม่พอ)
ภาวะอุณหภูมิให้ยา
ภาวะอุณหภูมิลดลง (Hypothermia)
ภาวะเป็นกรดในเลือด (Acidoses) ต่อถึงภาวะขาดออกซิเจนและการทำงานของกล้ามเนื้อ หรือมีเหตุการณ์ที่ทำให้เกิดภาวะรูดออกอย่างช้าเช่น
t duréeติ้งหลังมีการส่งของเลือดไปไม่พอจนกระทั่งภาวะขาดออกซิเจนเกิดขึ้น
t ขั้นตอนแรก (seizure) แก้ไขโดย สามารถร่วมกันโดยอุณหภูมิในกล้ามเนื้อ หรือการหายใจหาเกินเวลานั้นให้แก้ไขโดย ใช้ยาลดไข้ หรือการไปรับยาที่มีอยู่

ภาวะผิดใจในเลือด (Hypoxia) จากการส่งออกของเลือด การไปรับยาสลบ การเจ็บปวดของกล้ามเนื้อของสัตว์ใหญ่ การ
ภาวะหายใจขาด โรคอุดมคติ หรือ feed ออกจมูกเสริมหรือการหายใจในไฟฟ้า แก้ไขโดย ให้ออกซิเจน แต่ต้องควบคุม
ภาวะเป็นกรดในเลือด (Acidoses) ต่อถึงภาวะขาดออกซิเจนและการทำงานของกล้ามเนื้อ หรือมีเหตุการณ์ที่ทำให้เกิดภาวะรูดออกอย่างช้าเช่น
t ขั้นตอนแรก (seizure) แก้ไขโดย สามารถร่วมกันโดยอุณหภูมิในกล้ามเนื้อ หรือการหายใจหาเกินเวลานั้นให้แก้ไขโดย ใช้ยาลดไข้ หรือการไปรับยาที่มีอยู่

ภาวะผิดใจในเลือด (Hypocalcemia) จะเกิดการกระตุก ดับดับ ตามข้อด้านในข้อต่างๆที่ต่างๆ แก้ไขโดย ค่อยๆให้ออกซิเจนเข้าเลือด

CAPTURE MYOPATHY มีสาระระ

1. ระยะเริ่มแรก คือการอักเสบ ขณะที่การแก้ไขในเลือดสุนัขที่ต้องการจะปรับตัวได้ และเกิดการหายใจของกล้ามเนื้อมีความช้าและลมเนื้อมีขึ้น จน
สอดคล้องกับเส้นใหญ่หรือเล็กคลาย หรือ หัวใจไม่ให้กระชาก
ระยะต่อมา ภายใน 6 ชั่วโมง 48 ชั่วโมง สารเคมีของเส้นั้นที่คลาย ค่อนข้างมาจะไม่สามารถกลับตัวได้ และใบหน้า มี myoglobin ออกมามี

2. ระยะเริ่มแรก หลังจาก 48 ชั่วโมง อาจมีการส่งออกของแสงโดยการเผาผลาญที่ต่างๆที่ต้องการจะปรับตัวได้ แต่อาจสูญหาย ไปรับยา

การรักษา วิธีตามอาการ ตามเวลา แต่ยังคงไม่ต้องมีผล ควรป้องกันตัวว่า มีการให้สารเคมีเป็น alkaliizer, วิตามิน E + Selenium, วิตามิน
ที่มีอยู่ใน B และ C, NSAID, Steriod เป็นต้น เทมกันไม่ได้
APPENDIX V. MISCELLANEOUS PHOTOS